游梁式抽油机模型是油田目前主要使用的抽油机类型,主要由驴头、游梁、连杆、曲柄机构、减速箱、动力设备和装备部分组成。
工作时,电动机的转动经变速箱、曲柄连杆机构变成驴头的上下运动,驴头经光杆、抽油杆带动井下抽油泵的柱塞作上下运动,从而不断地把井中的抽出井筒。
为了能够实现对虚拟环境中模型的管理,需要对模型进行层次化和组件化。层次化要求对模型进行详细的分类,组件化要求将模型终化分为不需要进一步分解的原子模型,然后在此基础上组合成用户所需要的组合模型。首先对模型的类型进行层次化的分类,将战场仿真环境中的实体进行进一步的分类,对类型分类的基础上可以提出具体可应用的模型,然后对应用模型进一步分解,终得到不能够或不必要进一步分解的模型称为原子模型。这样就将模型分为了三个层次,分别为模型类型层、应用模型层和原子模型层,便于存储管理。对于单个模型,本系统采用面向对象的模型表示。模型可以表示成一个三元组的形式:{M_id, M_attribute, M_operation}。M_id是模型的标识符,相当于身份确认;M_attribute 用于描述模型的各类属性。对于组合模型还需要增加两类属性:子模型列表和子模型参数信息。子模型列表包括组成该组合模型的各子模型的顺序信息,子模型参数信息是组成组合模型时子模型的接口信息;M_operation 描述模型的操作,包括模型的集成,调用,运行等操作。之所以采用这个方法是因为很多大型装备有共同之处,可以用少数子模型组合出大量整模型,减少了库中的储存量。本文是以工程兵的装备为主要研究对象。例如实体可分为、墙艺漆车辆等。在车辆中的模型有扫雷坦克、布雷坦克、坦克架桥车等。履带式布雷车模型与坦克车模型可以通用一种履带,所以存储时只用存一条履带和两个不同的车体。
烧结生产仿真实训教学模型 高炉炼铁仿真实训教学模型 转炉炼钢生产仿真实训模型
高中化学教学构建模型与运用模型对化学学习起着非常重要的作用。 所谓模型是根据已知的事实建立的对研究对象简洁的仿真性的表述。有了模型,我们就可以进行粗略的理论计算,解释研究对象的规律,作出科学的猜测,利用模型可以揭示原型的形态、特征和本质,建立科学模型和由模型来研究问题,是连接理论和应用的桥梁,使抽象问题具体化。一方面,在模型思维中,我们可以从原型出发,根据某一特定目的,抓住原型的本质特征,对原型进行抽象,把复杂的原型客体加以简化和纯化,建构一个能反映原型本质联系的模型,并进而通过对模型的研究获取原型的信息,为形成理论建立基础。另一方面,高度抽象化的科学概念.、假说和理论要正确体现其认识功能,具体化为某个特定的模型,才能发挥理论实践的作用。还有一些不便直接接触的实物研究也需要模型来帮助理解(如细胞结构)。我们进行化学教学建构模型,让学生去体验建构模型的过程。物质结构与性质这个模块,给我们提供很多的素材,我们可以借用这些素材来让学生体验建构模型的过程。例如:学生动手制作晶胞模型并拼制成晶体模型和许多分子的空间构型。
CRH380BL型动车组乘务实训装置模型 CR400BF高铁模拟舱乘务实训装置模型
在高中物理教学中,模型一直占有重要的地位,物理学科的研究对象是自然界物质的结构和普遍的运动形式,对于那些纷繁复杂事物的研究,首先就需要抓住其主要的特征,而舍去那些次要的因素,形成一种经过抽象概括了的理想化的“模型”,这种以模型概括复杂事物的方法,是对复杂事物的合理的简化。对模型进行深刻的研究和分析,掌握模型的基本规律后,就相当于掌握了一个模块,利用一个一个这样的模块,就可以构建复杂的物理问题,反之,复杂的物理问题也可以由此得解。因此,无论问题情景多么新颖多变、或是与日常生活密切联系的实际问题,都可以归结为学生熟悉的物理模型。比如:运动员的跳水问题是一个“竖直上抛”运动的物理模型;人体心脏收缩使血液在血管中流动可简化为一个“做功”的模型等等。由于物理模型是同类通性问题的本质体现和核心归整,长期以来,建立物理模型的方法一直是中学物理教学的重要内容,它对提高课堂效率、培养学生能力起到一定的作用。
目前,在高中物理课堂教学中虽已重视了物理模型的教学作用,但许多教师还只停留在单纯地利用物理模型进行物理知识和技能的训练层面上,典型的教学模式往往是先由教师总结归纳出一些物理模型呈现给学生,让学生跟着教师的思路去理解,并辅以大量机械性训练。这样的课堂教学完全由教师主宰,忽视了学生的认知主体作用。学生往往只会识别已接触过的模型,不会辨别未遇到过的情景,更不会自己建立模型、解决问题。这造成了学生不重视构建物理模型的过程,更多的是运用形象思维方式,只记住物理模型的静态结论,生搬硬套。
同样,带电粒子以一定的初速度沿垂直于电场方向进入电场的运动,由于带电粒子所受的电场力的方向与初速度方向垂直,与只受重力作用以一定的水平速度抛出的物体的运动相类似,其运动规律与平抛运动模型相同,故被称之为类平抛运动,或抛体运动。
10KV高压开关柜模型 低压开关柜模型 1600KVA配电变压器模型 15000KVar电容器补偿塔模型
特高压换流阀模型 2000KVA调压器模型 200KV标准电容器模型 1800KV冲击电压试验装置模型
2500KVA试验变压器模型 300KW变压器模型 500KV高压电容分压器模型 电抗器模型 移动变压器车辆模型
因此,要合理地进行物理模型转换,还必须在头脑中逐渐建立起足够多的物理模型,形成“模型知识块”,并通过一些典型模型的受力和初始状态的分析、处理、总结、归纳,理清相关物理量间的关系,为运用模型转换打下坚实的基础。